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ABSTRACT 

P v2 
The bracketing theorem in  the par t i t ioning technique fo r  solving 

the Schradinger equation may be used i n  principle to determine upper 

and lower bounds t o  energy eigenvalues, 

accuracy desired may bo evaluated by u t i l i z ing  the properties of 

"inner projections" on f i n i t e  manifolds i n  the Hilbert  space, The 

method is here applied t o  the ground s t a t e  and excited states of a 

Pract ical  lawer bounds of any 

Hamiltonian a s ab +-v having a posit ive def in i te  perturbation 

-v . Even i f  inspiration i s  derived from the method of intermediate 

Hamiltonians, the final resu l t s  are of bracketing type and independent 

of t h i s  approach. The method is numerically i l l u s t r a t ed  i n  some- 

accompanying papers. 
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The problem of evaluating lower Sounds to the energy eigenvalues 

t o  the Schrgdinger equation 3 1s = E& is of great importance 
and, i n  a previous paper", we have given a short  swTey of the his tory 

of the problem and a sumnary of the r e su l t s  obtained so far .  

mental importance of the work by Alexander Veinstein2) and h1s school, 

Aronszajn3), Pox and Bazley4) et. al., and the strength of the idea of 

the "intermediate Hamiltonians" were emphasized. At the same t i m e ,  it 

was sham tha t  the prcblem could be approached i n  dn en t i r e ly  d i f fe ren t  

way by using the so-called "bracketing function" &, = 4 ( E  ) , which 

is such t h a t  every in te rva l  ( &, & ) contains a t  l ea s t  one t rue  eigen- 

value E . I f  & is chosen as an upper bound and &,C & 
quantity & i s  hence going t o  provide a lower bound t o  E .  

The funda- 

the 

I 

The main problem i n  t h i s  approach i s  to evaluate the bracketing 

( & )  or a lower bound t o  this function for a given 

value function of the 4 va = f iable  & . I n  t h i s  connection, it may be convenient t o  

put the Hamiltonian i n  the form & 5 %  

Hamiltonian 

?r is a not necessarily s m a l l  "perturbation". 

problem of evaluating a lower bound t o  the ground-state energy of a, i n  

case the conditions 

-t v where the "unperturbed" 
e o  

has the eigenvalues xk and eigenfunctions &: , and 

In PT X, we studied the 

were fu l f i l l ed .  

posit ive def ini te ,  and the second tha t  the ground-state energy of & 
should be si tuated between the ~ W G  lowest eigenvalues of 8 ,  . 
paper, we a re  going t o  make ourselves f r e e  from the second r e s t r i c t i o n  

and t o  extend the treatment a l so  t o  the excited states. 

The first implies t ha t  the "porturlration"V should be 

I n  t h i s  
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The partitioning technique') for solving the Schrddinger equaticn 
q& = s& is  based on the uge of a variable & , a nomalized 

reference function @ having (Zp 19) = 1, and a reduced resolvent 

din?ensimal "reference apace" and ? = 1 - @ is the projection operator 

for the crthogonal complexent, one has the definit ion 

T . If 0 = \cF)<Cpl FR the pmjection operator on the one- 

for any 0 . 'Ithis operator satisftes the following algebraic 

relations 

O T - T O - 0 ,  

and it has becme custmary t o  use the symbollic notation 

(3) 

The fundamental po?ertfes of I are otardied in Appendix A. ]cn order 
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t o  proceed, it  is  convenient t o  introduce the "trial" wave function 

associated with the variable & by the definit ion: 

It sa t i s f i e s  the intermeaiate normalization (CP I ?&e> = 1 useful 

i n  a l l  parts of the spectrum and, according eo (4), the re la t ion  

This implies tha t  

where we hav used the notation & = <q 1 1 > . It is 

associated with the Schrudinger equation and with a right-hand member 

proportional t o  the reference function 

clear tha t  gb s a t i s f i e s  an inhomogeneous 1 d i f f e ren t i a l  equation closely 

: 

Of part icular  in te res t  is the quantity & given by the re la t ion  1 
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and defining a function €1 = # (&) of the variable & , which 
will be studied Over the real ax s, -% < & too . The 

values -& fo r  which E = = , are of special  importance, 

since the t r i a l  function && w i l l  then sa t i s fy  the or iginal  Schrminger 
equation ( q - ~  &= = 0 . 

From now on, we will 'concentrate our in te res t  t o  regions where the 

tr ial  function (8) is normalizable, so t ha t  

exists. According t o  (6), one obtains further 

( & ) is negative, The curve fo r  
= $(&) is hence decreasing, and has fur ther  a 

so t ha t  the derivative 

series o 

the operator 

ve r t i ca l  asymptotes for such &-values as are eigenvalues of 

= p q p  di€ferent from the eigenvalues of the 

sperator a itself, For kz ther  det8flay see i2i;pzr;dix a zzd PT x. 

Let us now consider a continuous par t  of the curve 

associated with the eigenvalue . Putting &, = E+ c ,  an 

5 i 5  where o< 0 4  .f and t h i s  gives 



which implies t ha t  the “erirorti” 6 ar-d i&4 have different  sdgns and 

tha t  the numbers & and E.( 
32 . For t h i s  reason, the function 

ing be called the “bracketing function”. 

e.g. 
there i s  a t  leas t  one eigenvalue between--- and 19) -- 
a re su l t  familiar from the var ia t ion principle. 

bracket at l ea s t  one true eigenvalue 

w i l l  i n  the fol lw- 
- OQ , one has For 

&, = (9 1% I q> , and the bracketing theorem says that 

A study of the re lat ions (l.2) and (14) shows that 6, is a be t t e r  

- bound t o  than & , if and only i f  I t / (E+eq\< I i.e. 

According t o  (12), t h i s  means t h s t  the reference function 

a larger  contribution than r. e or t l  czgstial eomplement 

normalization integral  < && k$k > , f.e. 
than 5O$ of the wave function & .) 

must give 

TfBe cd) to’the 

must contribute more 

The bracketing procedure breaks down only if the reference function 

happens t o  be orthogonal t o  specific eigenfunction 

the associated eigenvalue r-, 
reference function @ 
tha t ,  i f  one wants a good uplicr t w ~ d  & t o  give an even be t t e r  lower 

bound , the function C:!; !IW Cc be cnrefully chosen. In the per- 

turbation theory developea i n  IzT ?:, thQ reference function 

chosen t o  be an eigenfunctlchs t o  \4b,L1 Y’ 
large, the condition (1.5) x?-y iw: Eic w t i a f h d  at (ill. 
evaluation of &{ is  aa;soc:strrl w.rt:, x - r i k k q  the Hamiltonian i n  the 

, i n  which case 

di>ns TIO; show up at a l l .  Otherwise the 

may be chosen quite esbitrari l .y,  b:st i t  is  c l ea r  

was 

ami,  if the perturbation i s  
Since our pract ical  
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form 

modification of perturbation theory i n  which one can use an a rb i t r a ry  

reference function 

by improving t h i s  function i t s e l f .  

= A t  -i- -v , it is hence desirable t o  t r y  t o  develop a 
0 

as a s ta r t ing  point and improve the bounds 

Wave and Reaction Opetetcrs 

If the Hamiltonian a 
and a wave operator ?A,7 

is written as the 8m of two terms = 

%,+ 77- , it is  comrenient t o  introduce, a generalized reaction operator 
through the relations: 

-w= I S T V ,  

Whereas i n  conventional perturbation theory, one tries t o  hit tlme trie 

eigenvalue 

value i n  an in te rva l  ( e 
L---#. R IIGILLG deperiii mi w . 

a t  once, we w i l l  here only t r y  t o  "bracket" such an eigen- 

& ) , and the operators 4 and-iT w i l l  1 '  

In order t o  proceed, it  is now convenient t o  iirtroduce the reduced 
through the symbolic 

0 
associated with the operator 8 r e  solvent 

re1  a t  ion 

LI' P 
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If the perturbation 

further the more general expression 
has a product fonn, v= v, e - q a  , one 8-t 

which is easi ly  sho n t o  sa t i s fy  the basic equation 4 = v+ v 5 4 
even i f  th? factors and -va would not have’any inverse operatore. 

If finally v has ati inverse, one obtains the simple re la t ion  
I 

which forms the atsrting point f o r  P!C X. For the reduced resolvent T , 
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It should be obsebved that a l l  the relations (16) - (24) are valid 

irrespective of the choice of the reference function which enters 

only through the projection operator 

onal complement. 
7 = 4 - \ p><q 1 fcr  s'nc or ihc~g-  

Transfoxmation of the gave Function 

According to (8), the trial wave function associated with the 
variable & may be written in the form 

For the operator ( 4 + 
(20) the following transformation: 

r% ), me g e t s  now according to (a) a d  

Because of the factor ( 1 + 
in the following, it is nuw convenient t o  introducer EL modlff .ed reference 

qo ), which is  g o b $  to  accw frequer.tiy 

- 
$Q through the relation 

The problem of calculating this function is treated in Appendix B. 
Combination of (25)  and (26) gives ffteally 
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- w work on the modified reference function 9 I f  

reference function @ is chosen t o  be an eigenfunction 

one has d d i a t e l y  = $: , and one is back t o  the 

the or iginal  

treatment i n  
PT x. 

Transformation of the Bracketing Function 

According t o  (ll), the bracketing function is  defined by the expres- 

sion e, = (CQ (a+QTa \ c p )  . For the operator a+aT&, 
one obtains, by using the relat ions & = + V T v  , Tv = $ , 
VT=J'T , & T = T + X J q  treated above, the following 

transformation : 

Substituting t h i s  expression into (ll), we obtain 



which is an expression closely analogous t o  the corresponding fonmrla 

(301 

which gives the bracketing function as an expectation value with respast 

t o  CQ . In t h i s  connection, however, it should be o b s e m d  that the 
modified reference function ?f 

L 

is not properly normalized: 

- 
and tha t  fur ther  depends on the variable & . In the following, 

we w i l l  hence mainly use the form (29) for pract ical  purposes. 

Effect of Inner Projectton 

In this section, we w i l l  try t o  evaluate 8 lower bound t o  the 
( & ) defined by (29) in the case of a 

po8itgVe & & r l l A L S  11--* I^ . -I- +h+a ~ j - ~ j - -  n r w p n a m ,  --- will 
bracketing function & 

u t i l i z e  the method of forning'*inner projections" * . 

Pnner Pro1 ec t ions 

If = ( f i  ,f.. ) s * Jq ) is  a set of n l inear ly  independent 

functions in Hilbert  space having the metric A = (;f I$> , i.e. 
A,, = 'fbIJb> , and spanning a subspace a m , then the 
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For the inner prujestfon, one abtabs  accord€ng to (32) md (35) 
following alternative expressions: 

The f i r s t  form w i l l  be denoted as the standard - i n n s r a j e c t i a n ,  wk4xreas 

the second w i l l  be called an . $ r o n s z a j n ~ ~ e c t i c m s  and ehe third B E3zXq 

z_r,J,--.”-” o‘sctiori. 

ay\ I.$ ) , . . 
Xt may aPao be convenient to refer to the manifold 

) as the “standard space“, eo the m~idfold 
”.. r ~ p  ) 8s an “Aronszajn space’‘, and t o  rhc zaniiof .̂ 

ae a “Bazlejr space“. It should be, observed chat ths 

form (37) was  the first one to be i:nt,ro<?acf?ii by Armszaj$I 

additional features of chis projection are treated in Aplie~dPx C, 

and mm? 

e qua2 i t y  
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which is a practically very useful form. 
Bazley space .)p 

Using (22) and introducing the 

, one obtains further the relat ion 

showing that  t 1 has actually the same form as the Bazlety projection of 

t. 

conclusions which later cannot be properly verified. 

(41) and (42) into (29) gives 

However, since t is not positive definite, m e  must not draw any 
Substitucfon of 

(43 1 I , '  

where 

One has hence the theorem that,  provided & is a proper upper bound, 

eigenvalue of a . &( is a lower bound t o  an eigenvalue of / and hence a l so  t o  an 

I It seems eimple and straightforward t o  apply t h i s  

approach, but there is an inherent diff icul ty  connected with the "ordering 
I 

I 
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theorem", which is a t  first sight not so obvious, but which s h w s  up 

very strongly i n  the applications, par t icular ly  i f  3 0 has a I-m-Kgfng 

l imit ing point. 

- 0  It has been 8 h m  by Gay5) tha t ,  under the condition e .( z4 ~ 

I 

the substi tution & = ( 
the intermediate Bamiltonian and the evaluation of a lower bound for Eke 

However, depending on the d i f f i cu l t i e s  with the ordering theorern, there is 

for the moment no method t o  generalize this approach 0 also t o  the excited 
states o r  t o  ground state levels situated abwe xf 
is the ground state of the H- ion which, for  7$ = ~"//&I+J, , has four 

unperturbed energy levels si tuated below the ground state energy. 

- great ly  rsi,mplifies the study of 
) 4 

ground s t a t e ,  and t h i s  approach has been further extended by Brfght 

. A good test case 

The bracketing theorem t e l l s  us here tha t  there is a t  Least one 
# 

eigenvalue t o  8' si tuated between c f  4 a-!c? 6 , but, unless one has 

additional information about the lower eigenvalues, it seems impossibbe 

t o  say whether the interval  contains a, los  an eigenvalue to  % . A t  this  

point, we will leave the method of "intermediate Hamiltanfansv' and try a 

more dfrec t approach. 

Direct Treatment FTi"iout an Xntermdiate Kamiltmian 

In connection with the inner projections, it i a  interest ing t o  

observe that  t h e  fom (36)  exists only f o r  Q posit ive def ini te  fl , 
whereas the forms (37) and (38) may exist even i f  t h i s  is niX tlr..e case. 

In  (b), there appears actually a "Bazlay prcjestfon'' of the reach~iorb 

operator t , in s p i t e  of the fact that t h i s  operator may not be 

posit ive def ini te .  It may hence be worthwhile t o  study the reaction 
I 

operator t associated with the perturbation 
see whether one can find flume simple sufbicfent conditions for tbe in- 

) equality 1: < t , whichwould then enable us t o  say tha t  them is at 

least one eigenvalue to si tuated in the interval b c t v i ~ ~  @L P and 

& *  
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I and (22), we obtain 

where 
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gives 

% % - 4  
This implies that  t '< t , if the operator ( 4-v Tv 
positive def ini te  fo r  the given value of 

( 1- Q ), i.e. within the orthogonal complement t o  the standard mi- 

fold 

) is 

within the subspace of 

$ = (J+> ' . * 3;. ) *  

It is perhaps interest ing t o  observe t ha t  perturbation expansiohs 

of the Brillouin-tupe for t and are  possible, i f  and only i f  the 

convergence c r i ter ion 

1/2 r-7 
i s  fu l f i l l ed .  Since i n  such a case ?-Y 
further  ( 4 -yk 5 
condition (49) is automatically fu l f i l l ed .  

I bv' > 0 , one has 

over the e n t i r e  space, and the yk, )-' > 0 



, 

-19- 

hr- 
Let us now consider an energy level of dv suc., ?That t h r e  is  an 

upper bound & satisfying the frequelity 

- & < E,,, 

for a f in i te  value of e . In such a case, it seems t=mven%eent to  

choose a minimum Arcnrszajn space consisting o f  a11 the unperturbed 

f unc t ions 

and an arbitrary reference function Cf) within this space: 

(51) 

For , one obtains a spectral. resolution of the form (see Appendix A): 
0 

T' is eettainly negative definite: v' 0 < 0 
0 

where the second tern 
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We note that the Aronszajn space has been chosen so that the functions 

for  = o,~, * .  . a l l  belong to 9 , whereas 
the functions 

This gives 
a > for &= $+2, , . I) a11 belong t o  (4-Q )e 

( 5 5 )  

- 4  -1 -4  
By using the operator identity ( R - 3  ) 5 .rj't @( a-3 ) 
obtain further 

s we 

which gives 
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Q?Q ) 

which gives the relat ions ( 9-Q 
I ) < ( 1- Q ) and 

The condition (49) is hence fu l f i l l ed ,  and one has consequently 

a > 0 and t < t . This implies a l so  that ,  i n  the interval between / 

E< and & , there is situated at  least one eigenvalue of the operator 

i tself ,  and no further ordering theorem is required. The lower 
bound &' is conveniently calculated by one of the relat ions (43). 1 

Let us now keep the reference function fixed, but extend the 

For the associated projection operator 

Aronszajn space t o  a larger  manifold 31 , which caatains the mininnun 

space (52) previously defined. 

for  the "standard space1@, one has 

(59) 

*hiplying (58) t o  the left  and right by ( 4- Q, ), one obtains 

which shows tha t  0 )o , t '< t and &(< 
space. We note f ina l ly  tha t  

identity,  and tha t  the convergence is essent ia l ly  monotonous as soon ae 

the space is extended, function f o r  function, beyond the mtqimum space. 
Formula (43) provides hence a lower bound which can be indefinitely 

improved by choosing a be t te r  and bet ter  upper bound & and by properly 

extending the f i n i t e  subspace used in the  inner projection. 

a lso for  the extended 

goes t o  zero as Q approaches the 
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yr The practical  treatment of the operator 1 is  outlined i n  
b 

Appendix A, and one may fur ther  simplify the, calculations by some of 

the transformations described i n  PT X. 

V. PERTllRBATION EXPANSIONS 

Mi’ 
. In conventional perturbation theory, the operators t and 3\7 are 

expanded i n  terms of i n f in i t e  power ser ies  i n  the operator v . 
PT X, we have studied the corresponding f i n i t e  expansions 

of the remainder tern,  and we w i l l  here br ie f ly  consider these expansions 

i n  the case of v> 0 
r e feknce  function and minimum Aronszajn space according to (521, 

one obtains a lower bound t fo r  the reaction operator t , so thct 

t’< t Here t i s  defined by the expressions (41) and (k). 

In  
with an e s t i m t e  

0 
and & <Ep . By a proper choice of 

/ 3 
/ 

Using (22) and the synmtetric expansion of the inverse’), one obtains 

d i r ec t ly  

and the lower bound 

More generally one has the f i n i t e  expansion 



and substi tution in to  (43) gives the estimate 

This formula is a d i rec t  generalization of the corresponding relat ion in  

PT X t o  the case of an arbi t rary reference function, and it remains still 
t o  be seen how useful expansions of t h i s  type can be. 

VI DISCUSSION 

In  t h i s  paper, we have discussed the application of the parti t ioning 

technique and the evaluation of the bracketing function & 4  =gcc 1 
i n  the case when the Hamiltonian can be writ ten as the sum of tw terms 

= + , one of which is positive definite.  If t he  variable 

& is chosen as an upper bound, the quantity 6 will provide a '  1 
lower bound t o  an eigenvalue .E situated between &, and &, . 
PT X, the case 

ment has here been extended t o  the case &< -Ep+, It has been 

In 
7 0  E < At was studied i n  greater de t a i l ,  and the t r ea t -  

0 

sham tha t ,  i f  the Aronszajn space contains ill the eigenfunctions 
.\CQ sc 0 1 c O  -A 9 0  9 @* 9 - 0 .  s., , and the reference function y is B 

l i nea r  combination of them, the quantity 



-24- 

' ami hence also t o  E . ~n ET X, we provides a lower bound t o  

have discussed some transformations and methods which may be useful. i n  

evaluating quant i t ies  of t h i s  type,, %-I arr iving a t  the f ina l  resu l t s ,  

we have not exp l i c i t l y  used the idea of the intermediate Hanliltonians 

and the  associated ordering requdremene: as t o  the eigenvalues, which 

seeins t o  be an advantage. 

considered only as a f i r s t  rough approximation, and there is l i t t l e  

doubt t h a t  the discussion of the conditions for the inequality 

can be great ly  refined. 

res t r ic t ions  on the reference function c$ 

functions t o  

b-l 

However, the study of formula (46) should be 

t'< t 

It is a lso  desirable to remove the presei2e 

t o  be a f i n i t e  Bum o f  eigen- 

I n  conclusion, an al ternat ive approach based on the use of a multi- 

dimensional projection 0 of order should be briefly mentioned. 5 )  
The operator 

m y  be represented by a f i n i t e  matrix of order 

which are 811 fun-tians of the variable & .. The secular equation'fnr 

havfng elements 

E$.. 2 . .  * c of ortier nu\ defines a mu^lti-valued functi-on cq4+ 

of r le  variable & , and there i s  again a brackeh7ling theorem 

saying that each interval  between &, arid 

true eigenvilue Z, of %!, . ~n t h e  case 

venient t o  aefine (9 so that the subspace contains the functicns & , 
&to cantains st least one 

& < T e + f  , it is con- 0 

0 

${ , and the technique developed i n  p11: X can then be 

It should be observed t ha t ,  even i f  the secular equation renders applied. 

cl.r\ roots i o r  every value of & , there is  usually only one interval  

at a time which is  of pract ical  importance for bracketing an eigenvalue. 

This approach w i l l  be studied i n  greater  d e t a i l  in  a forthcoming paper. 

Some numerical applications of formula (66) and the technique 

developed i n  t h i s  paper are published in the accompanying papers by 
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APPENDIX A. PROPERTIES OF THE REDUCED RESOLVENTS T AND 'To 
The reduced resolvent T is defined by (2) and characterized by 

the re lat ions (3) - (6). One has fur ther  PT = TI$ = . The 
operator T has been evaluated if, for any given function 
can determine the function 

sat isfying the re la t ion  p 7 = 7 . TMS problem can be attacked 

i n  several ways. 

Spectral Resolution of T . 
Let us assume that  a has the eigenfunctions $k, and eigenvalues 

satisfying the 
and the spectral  resolution 

us fur ther  consider the "outer projection" defined by the re la t ion  

3 = t 

c 

The reference function i s  an eigenfunction of 8 associated with 

the eigenvalue 0 , which is of l i t t l e  in t e re s t  t o  us, and instead we 

W i l l  concentrate on the eigenfunctions z h  associated with t h e  eigen- 

values IF; si tuated in the subspace of 'ss . One has the resolutions k 

j Ak) 
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Let us now study the transformation (AI) .  Applying the operator 
( &- a ) to  both sides and using ( h ) ,  m e  obtains 

and 

T 

where 1 &,><sn,I = 5 k  i s  a positive definite projection operator. 

This is  the spectral resolution L of T , in  which one sums aver a l l  

eigenfunctions L gh to  within the subspace of ? - . If the eigen- 

values of. in  increasing order are E, < < E,< . . , 
one obtains, for &<E,, , the estimate: 
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and more generally, for & < Evi : 

--- 
r ti 

It i s  evident that the eigenvalues and eigenfunctians of ~&,t 

role i n  determining the properties of T 
play a Iargc: 

Eigenvalue Prohlem of = , 

Let us now study the efgmvalue lproblc~m 

-c.' 

where a l l  the eigenfunctions $ should belong to kRe subspace n 

so that ~s 
-"\ ._ 

eigenfunctions are also orthogonal. t o  9 
(Ag),  one obtains 

, 
= jj$ . mis i s  a typical Weiaszein probtern.r!, c 

~ i f i  

so that (92 @, - 0 Frox 



A t  th is  point, €Lt is convenient to intrsduce the 60-Calk?d Xeinafein 
f unc ti on : 

*. 

which is a simple special case of the Weinstein determinant 1) e It 
follows from (AlO") that, i f  

eigenvalue i e  a zero-point of the Weinstain determinant. Since 
(91 a I$  > 0 , the associated - - 

the Weinstein function is monotonously decreasing with a , but it 

should be observed that the curve for v ( 2  1 has a serics of vert$cal 

asymptotes. 





-31- 

cp n 

I f  one puts the left-hand side equal t o  zero, the functhon -$< >% 1 ~ $ 1 1  
be negative, and the corresponding 

bounds t o  the eigenvalues f: 
right-hand side equal t o  zero, the function w ( A  ) w i l l  L be pssl.tZ$r~!, 

and the corresponding 3 - values w i l l  be lower bounds t o  E 

2 - values w i l l  then be upper 
c . On the other hand, i f  one puts the 

As an example of t h i s  technique, we w i l l  bracket the lovest eigen- 
c 

value of 3 , For a&, , one has according t o  (A16) $or r= 4 and f =  0 , respectively: 

Putting the bounds equal t o  zero, one obtains the f o l l ~ ~ h g  basska,ting: 

If (0 i s  a mixture of go and $, only, these two toun?e w i l l  

coincide, and 

reference function, the bounds may be improved by irLr-teasing the value?? 

3r;g is exactly de,:ermined. In the cap: of P, gerieral 

used i n  the estimate (Al6) ,  until  one reac ea +he accuracy 
Of 5 
desired, 
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It is interesting e@ observe that, 

one has the operator €nequalI.ey 

which applied to the reference f m c t i n  9 gi.ves 

Substitution into the 3mr:s E O U R ~  4 . 1  (~18) 6ivc.s 

4 

It is clear that a l l  the quantities 

terms of the quantities 

(AG), it should then be possible to expreso also T in terms of 
latter quantities. We will now try to deternine this exprestiar, 
directly . 

and E& ci’y t.p. c -  Y , * - (  L . ’ & ?  
u , Eb , and ‘it, , a d ,  n*:cnrdL:iy l.2 
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Alternative Form ob 

Let us return to the basic relation (Al). Since 7 = "f , 
one has (CP IF) = 0 . According to ( b ) ,  one gets further 

This impl ies  that, for the constant c>( = <qlf+aF>, one gets 

the value 

Substitution into (a) gives the expl ic i t  solution 

For the reduced resolvent8 , one obtains hence the following fcmula 
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We note that the quantity in the denomhator is nothing but Che Weinstein 

function v( & )  defined in  ( A l l ) .  

Let us now transform this  expression. By using the oyectral resolu- 

tions (Alk) and (A15), m e  obtains for the numerator of (UT): 



where we have used the notation 

Substitution in to  (w) gives f ina l ly  

J 

which is the exp l i c i t  expression desired. The operator -(r f kt a,, 
is posit ive def in i te  and s a t i s f i e s  the re la t ions  

The l a t t e r  implies tha t ,  except for a constant factor ,  the operator 

is also a projection operator. The form (431) is 

1 
(-=k& -t A,,) n- such that  one can eas i ly  give upper and lower estimates t o  anaiogous 

t o  (A8). 

We have here gone in to  some deta i l s  t o  study the properties of the 

reduced resolvent T , which is the basic operator of the en t i r e  

par t i t ioning technique. 

a set  of formulas for  the operator 

cations t o  perturbation theory. 

replace 3 by ad 

We note that ,  a t  the same t i m e ,  we have obtained 

which occurs i n  a l l  the appli- 

The only thing one has t o  do is t o  

and t o  add an upper index 0 t o  a l l  the eigenfunctiona 



, a l l  the eigenvalues E& , and to a31 the coefficients C7., 
IXI these applicatfans, it is hence cornentent t o  3peciPg the refermze 

function 9 

c 4, 
BC %,.E 33 in terms of t.be eigtrnfunctfms t o  
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APPENDIX B. CALCULATION OF 
REFERENCE FUNCTION 

The simple formulas (2;o and (3) fo r  

THE MODIFIED 

the t r ia l  wave function 

(& ) are both based on the use 

defined by (26) o r  

and the bracketing function & 
of the modified reference function 

- 
It should be observed tha t  Cp depends only on & , 9 , and 8 0  .. 
and is ent i re ly  independent of the perturbation 'v. Note tha t  

<qI ) Ec 4 . Letting the operator 

sides of (26) and applying (4), one obtains 

( &-a, ) work on both 

Substi tution of t h i s  - value into (B2) gives the expl ic i t  formula: 
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I 

- 
k=o & c E; 

f i n i t e  number of eigenfunctions to 3 0 , the some epplies :o 9 -  
which may be useful for  pract ical  purposes. If carrtnlr-z! on?.:, -- 

It i s  interest ing t o  observe that ,  If one could solve the -- Inlwm-= 

emus d i f fe ren t ia l  equation E- 

and find a quadratically 

one would aimply have 

1 4  1 
integrable solution 

The problem of evaluating 

perturbation theory; see PT IX.8) If the function r!l is introduced 

into the expression (M) f o r  = ad , one ob;. the fallmine; 

9 io hence closelj vi -2iatc.I v i 5  c~:iLn.~-y 



-39- 

which shows that any function Tf may be evaluated either by 
using a suitable expression for the resolvent ( e- go ) - I  or 
by solving an inhonogeneous equation of the aame type as occurs in 
perturbation theory 8) . 
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APPENDIX C. SOME PROPERTIES OF THE ARONSzAMi PROJECTION 

Since Aronszajn3) and Fox and Bszley') use projection operators 

which are not self-adjoint and hence of a rather  d i f fe ren t  type, it is 

perhaps worthwhile t o  point art the main differences i n  terminology. 

The Aronszajn projection A fl 7 0 
on a manifold 3 = qjl.pI... 6 ,,-, ) is defined by (27) 
Introducing the operator pa i r  

/ 
of a posit ive def in i te  operator 

one can write the def in i t ion  i n  the form 

It is easi ly  seen tha t  @ i s  a projection operator 9 

but we note tha t  35 o> , which means t ha t  one i s  considering 

a non-orthogonal projection. 

the more symmetric form 
Instead of (a), one can then a l so  uae 



The Aronszajn projection s a t i s f i e s  hence the character is t ic  

Using the resolution of the ident i ty  -4 = 0, + ( (DR ), one 
obtains 

which gives another derivation of the fundamental inequality f u l f i l l e d  

by the Aronszajn projection R/ . In  conclusion, we note that  

/ 
which means tha t ,  within the manifold $ 
same e f fec t  as F) . Since further ” 

, the operator has the 

/ 
the operator 9 
f i n i t e  subspace defined by the projection operator ( { - 

has the e f f ec t  of a zero-operator within the entlre io 



APPENDIX D. SECULAR EQUATION IN METHOD OF 
lYTEmEDu31E r n r n r n r n T S .  

L e t  us consider an intermediate H ~ m i l t o n i a n * ~ ~ ~ ~ )  of the type 
/ x f  = H0 e , where v is an Aronszajn projection of the per- 

turbation which is asswed t o  b2 posit ive definite.  One has 

a d  , and the eigenvalues of 8' are lower bounds 

According t o  (40) and (C5), one has the def ini t ion 

t o  the eigenvalues 

below. 
E k  of a if they are arranged i n  order from 

and, since v'1.4]> = v 17) , one has fur ther  &'laa) = 
31%) . From the re la t ion  v'( {-@, t ) = 0 follows tha t  

by the projection operator ( 4- (Dv t ) and, since v' is thus d i f fe ren t  
v' has the e f fec t  of a zero-operator within the en t i r e  subspace defined 

from zero only within a f i n i t e  subspace, it seems natural  t o  approach the 

solution of the eigenkalue problem for  3 
perturbation theory".') 

developed t o  treat impurities i n  sol id-s ta te  physics") and the mthods 

used by the Weinstein school. 

/ by means of "localized 

There is a close resemblance between t h i s  technique 

1 1  / 
The eigenvalue problerr; a &$ = e'$ m y  he modified i n  the 

following way : 
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This is the basic equation i n  localized perturbation theo2 ," ) .  

substi tuting the expression (Dl) fo r  'v 
the notation &z = ("a 1-r 11 TIL'? IV 1 $/> , and one 

obtains 

In 
/ , it is convenient t o  introduce 

- - I  
Multiplying to the l e f t  by <T/-vl?) <y 1v , one ge ts  fur ther  

and, for a # 0 , the condition 

which is the fundamental secular equation of the problem. 

It should be observed tha t  the operators 3' and rqo are actual ly  

the same within the en t i r e  i n f in i t e  subspace defined by the  projection 

operator ( 4 - Qt ) . The solution of the secular equation (D4) gives 
only those eigenvalues 2 of 2' as are  di2fcrent from the eigen- 

values of a. 
ordering theorem used i n  the inequality 

W /  

, but we note tha t ,  i n  order t o  be ablz to apply the 



/ 
one has t o  know - a l l  eigenvalues of a 
level  under consideration. 

i n  order from below up t o  the 

For a more complete discussion of t h i s  impor- 
t an t  problem, w e  w i l l  r e fe r  to the original. papers 2,3 34) 

Instead of solving the secular equation (D4), we have here t r ied  

t o  bracket the eigenvalues of 3’ . However, sincc the fnfluence of 

the ordering theorem is such thrtt an eigcmmlue E’ may be a lower 

bound not t o  a close-lying level but t o  an eigenvalue 

away, we have here t r i e d  to avoid the idea of the intermediate Hamil- 

tonian as f a r  as possible and instead tried t o  bracket the eigenvalues 

of directly.  In connection with t h i s  change sf approach, it 

seems par t icular ly  important t o  give f u l l  c red i t  t o  the pioneering work 

carried out by Prof. Alexander Weinstein a ~ l d  his co-w:vkers. 

rather f a r  
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